CPC5

www.cpcstrans.com

Eight County Freight Plan

East Central Intergovernmental Association & Blackhawk Hills Regional Council

CPCS Team September 25, 2017 Hurtsville Interpretive Center Maquoketa, IA

Project Sponsors

Work Plan Overview

We are here

		Months												
	1	1 2 3 4 5 6					7 8		9	10 11		12	13	14
Project Inception		_					,			10			13	
Task 0.1 - Kick-Off Meeting														
Task 0.2 - Literature Review and Initial Data Collection														
Task 0.3 - Project Management & revise Work Plan, as needed														
Task 1 - Data Collection and Inventory														
Task 1.1 - Physical Profile														
Task 1.2 - Operational Profile														
Task 1.3 - Stakeholder Consultations & 6 Council Meetings														
Task 2 - Needs Assessment and Analysis														
Task 2.1 - Freight System Performance Measures														
Task 2.2 - Existing and Future Commodity Flow Assessment														
Task 2.3 - Freight Modal Profiles and Needs Assessment Report														
Task 3 - Study Recommendations														
Task 3.1 - Freight System Infrastructure Projects														
Task 3.2 - Project Evaluation and Prioritization														
Task 3.3 - Supporting Freight System Strategies														
Task 4 - Reporting														
Task 4.1 - Draft Final Report														
Task 4.2 - Final Report														

Presentation Map

Freight System Needs (Working Paper 3)

Strategic Opportunities and Initial Projects Identification

Process to Evaluate and Prioritize Projects

Questions & Discussion

Eight County Freight Plan Development Framework

Assess Freight System Needs

- Current system performance
- Inform future needs
- Inform recommended strategies

Regional Vision

Regional Freight Goals

Regional Freight Goals

Recommended Freight System Needs

Strategies

Freight System Needs Assessment

Safety: Truck-Involved Crashes on Regional Interstates, National Highways, and State Highways

Eight County Truck Crash Rate (2015) = 0.36 truck crashes per million miles of truck VMT

Safety: Truck Crashes (US 20) 300 Truck-involved crashes between 2007 – 2015

Sources: Illinois DOT, 2016

Safety: Rail-Highway Crossing Incidents

At-Grade Public Crossing Incidents, April 2007- April 2017*

^{*}Includes two accidents not involving road vehicles in Clinton and Whiteside Counties.

Safety: Rail-Highway Crossing Incidents

Efficiency: Truck Travel Time Index

- Truck Travel Time Index (TTTI) is calculated to compare average truck travel times at peak hours (at 6:00-9:00 AM and 4:00-7:00 PM) against free-flow traffic times
 - The Region's TTTI value = 1.11
 - A truck trip that takes 1 hour in free-flow conditions takes an additional 6.6 minutes at peak times.
- The US overall Travel Time Index = 1.22 (in 2014)

Average Annual Speed vs. Posted Speed

Average Annual Speed vs. Posted Speed (Dubuque)

growing economies

Reliability: Truck Travel Time Reliability

For the region as a whole, truck travel times between peak and non-peak hours are almost identical.

PM Peak Interstate Reliability (2016)

Reliability: Waterway Reliability

Average and Median Annual Unavailable Hours by Lock and Dam

Solutions for growing economie

Source: US Army Corps of Engineers

Lock & Dam Facilities

WI

EIGHT COUNTY STUDY REGION

Saint Paul

MN

IA

Connectivity: 1-Day of Truck Flows from Region

Connectivity: 2-Days of Truck Flows from Region

Connectivity: 3-Days of Truck Flows from Region

Connectivity: Regional connection to freight modes and markets

- Intermodal Rail Facilities
 - 0 in Region
 - 3 outside Region
 - 1 planned outside Region
- Barge Terminals
 - 19 in Region
- Bulk Transfer Facilities (non-barge)
 - 13 in Region
- Airports
 - 2 that can accommodate Boeing 757's and 767's
 - no dedicated cargo service

Discussion on freight system needs

Open Discussion

– Are there freight system needs that we have not yet identified?

Presentation Map

Freight System Needs (Working Paper 3)

Strategic Opportunities and Initial Projects Identification

Process to Evaluate and Prioritize Projects

Questions & Discussion

Initial Slate of Strategic Recommendations

- Projects and project types
- Programs
- Policies
- Partnerships

Initial recommendations are conceptual, only, and have been developed in order to receive your feedback

Projects and Project Types

- New/expanded roadways (minimal need identified)
- Spot highway improvements to address congestion and safety
- Maintenance
 - Pavement improvements
 - Bridge improvements
- New/improved intermodal and/or port facilities
- Transload/consolidation facilities
- Lock and dam improvements

Specific Roadway Projects (Stakeholder ID'd)

- US-20 between Freeport and East Dubuque, and the Julien Dubuque Bridge (maintenance and safety improvements)
- US-30 expansion between Morrison and Clinton, and a full four lanes to Cedar Rapids (maintenance and safety improvements)
- IL-73 in poor condition and needs passing lanes for safety
- Stagecoach Trail in Illinois as a potential truck route (maintenance and safety improvements)
- **IL-64** in poor condition with narrow shoulders (maintenance and safety improvements)
- IA-136 was noted in poor condition with narrow shoulders (maintenance and safety improvements)
- IA-64 was noted in poor condition (maintenance)

Programs

- Programs focused on highway and railway safety
- Programs focused on technology applications to the (freight) transportation system
- Freight planning program to monitor needs, issues and progress
- Programs focused on enhancing skills of local workforce

Policies

- Truck regulation harmonization between Iowa and Illinois
- Illinois seasonal exemption for agricultural loads (up to 90,000 lbs).
- Truck route guidance

Partnerships

- State, county and local public agency partnerships
- Federal transportation agencies, including USDOT and the USACE
- Regional and local economic development agencies
- Class I and short line railroads
- Airports
- Water ports
- Other local private industry/businesses, especially those representing key freight industries of manufacturing and agriculture

Discussion on Slate of Initial Recommendations

Open Discussion

– What projects, programs, policies or partnerships do you consider critical for improved freight transportation?

Presentation Map

Freight System Needs (Working Paper 3)

Strategic Opportunities and Initial Projects Identification

Process to Evaluate and Prioritize Projects

Questions & Discussion

About Benefit-Cost Analysis

What do we learn?

- Benefits of freight improvements
 - Improvements in supply chain performance -- cost, speed,
 reliability, etc. compared to without-project conditions
 - Performance and cost data to help define/fine-tune projects
 - Support discretionary grant applications
- Benefit-cost analysis typically does not include economic impact evaluation (jobs, wages, taxes, etc.) or neutral "transfers" of benefits across regions or facilities

Benefit Cost Analysis Guidance

Recent USDOT guidance for INFRA and TIGER

- Costs and monetized benefits calculated annually over longterm (20-30 years) and discounted to present value at 7% and 3%; BCR is the ratio of discounted benefits to discounted costs
- Primary benefit categories
 - 1. State of good repair (pavement damage, etc.)
 - 2. Economic competitiveness (transportation cost, land value)
 - 3. Livability (congestion reduction, etc.)
 - 4. Sustainability (emissions reduction, etc.)
 - 5. Safety (crash reduction, etc.)
- New provisions
 - Reduced value for modal diversion projects
 - No recommended federal value for marginal social cost of carbon
 - Increased rigor in modeling congestion and safety improvements

Recommended Approach for this Study

Follow Federal guidance and develop spreadsheet analysis tool for BCR calculation

- Basic functions
 - Will includes all necessary factors, conversions, calculations
 - Will generate non-monetized benefits (changes in vehicle/railcar/vessel miles of travel, crashes, emissions, etc.)
 - Will generate the required monetized benefits and BCRs
- Input limitations
 - Full BCR requires detailed project definition, including detailed cost by year, detailed traffic forecasts, etc. – may not be available for all projects of interest
 - Solution: "parametric" approach, showing how results and BCRs vary based on different inputs – similar to recent BSRC Freight Plan

Example #1: Intermodal Rail Terminal

- What would be the societal benefits of building an intermodal rail terminal?
- B/C based on cost and volume of rail traffic
- Benefits considered
 - Cost savings to existing rail shippers
 - Benefits from truck to rail diversion
 - Reduction of emissions (NOX, PM, VOC & CO2)
 - Reduction of vehicular accidents
 - Reduction of pavement deterioration

Example #1: Assumptions

- Assumptions in BSRC analysis, based on anticipated project types and performance characteristics
 - Weighted average distance per truckload: 1,000 miles
 - Weighted average distance per rail container: 1,140 miles
 - Average weight of container: 16.5 tons
 - Considered truck drays
 - Intermodal market grows at 2.5% per year after 4 year ramp-up period
 - 10% discount relative to current cost
 - 30 year analysis horizon
 - Monetization parameters from USDOT

Example #1: BSRC Intermodal Rail Analysis Results

Example #2 – Highway Bottleneck Elimination

- What would be the societal benefits of eliminating a highway bottleneck (at grade rail crossing, signalization, low-speed segment, etc.)?
- B/C based on cost and volume of highway traffic
- Benefits considered
 - Improved travel time
 - Reduced fuel cost
 - Reduced emissions
 - Reduced accidents
 - Reduced maintenance costs

Demand and Network Performance Inputs

- We can use the Freight Analysis Framework data (from Working Paper 2) to generate key inputs to these models
- Origin-destination demand
 - By county and state, by mode, by commodity
 - Tells us how much freight will benefit from certain kinds of improvements -- high levels of traffic help drive high BCRs
- Network performance
 - We can assign FAF truck volumes to the FAF highway network
 - Calculate routes, volumes, travel times (and if desired costs) based on current conditions, for all commodities or market segments
 - Calculate future routes, volumes, travel times, and costs assuming performance changes in the network based on improvements
 - Distinguish Study Area trucks vs pass-through trucks
 - Current and future forecast growth
 - Water easy to assign; rail can be inferred from FRA line densities and validated with industry input

Truck Tonnage Desire Lines and IA-IL Densities

Outbound Truck Tons, Study Area to IA

FAF supports strong county-level assignments

Inbound Truck Tons, IL to Study Area

Outbound Truck Tons, Study Area to IL

Example: All Trucks vs. Through Trucks, IL

Example: 2014 vs. 245 Trucks, IL

Example: Cereal Grains and Foodstuffs Trucks, IL

Rail and Water Desire Lines

FAF assignments to be supported by Port / Corps data

Discussion on Benefit-Cost Analysis

- Is this preferred approach? (As an alternative to parametric/FAF analysis, we could analyze fewer projects with greater detail)
- If we proceed with parametric analysis, what types of projects should we address?
 - Rail
 - Intermodal terminal, transload terminal
 - Existing line improvement / new line construction
 - Highway
 - Grade crossing or other bottleneck elimination
 - Bypass or performance/capacity enhancement
 - Water
 - Transfer terminal
 - Others?

Presentation Map

Freight System Needs (Working Paper 3)

Strategic Opportunities and Initial Projects Identification

Process to Evaluate and Prioritize Projects

Questions & Discussion

Our Next Steps...

- Refine process to evaluate freight projects
- Select freight projects/types to evaluate
- Develop recommendations

	Months													
	1	2	3	4	5	6	7	8	9	10	11	12	13	14
Project Inception		_		•			•							
Task 0.1 - Kick-Off Meeting														
Task 0.2 - Literature Review and Initial Data Collection														
Task 0.3 - Project Management & revise Work Plan, as needed														
Task 1 - Data Collection and Inventory														
Task 1.1 - Physical Profile														
Task 1.2 - Operational Profile														
Task 1.3 - Stakeholder Consultations & 6 Council Meetings														
Task 2 - Needs Assessment and Analysis														
Task 2.1 - Freight System Performance Measures														
Task 2.2 - Existing and Future Commodity Flow Assessment														
Task 2.3 - Freight Modal Profiles and Needs Assessment Report														
Task 3 - Study Recommendations														
Task 3.1 - Freight System Infrastructure Projects														
Task 3.2 - Project Evaluation and Prioritization														
Task 3.3 - Supporting Freight System Strategies														
Task 4 - Reporting														
Task 4.1 - Draft Final Report														
Task 4.2 - Final Report														

Thank You

Erika Witzke, PE
Project Manager
ewitzke@cpcstrans.com

Alex Marach
Project Coordinator
amarach@cpcstrans.com

Alan Meyers
Supply Chain and Industry Expert
meyersap@pbworld.com

